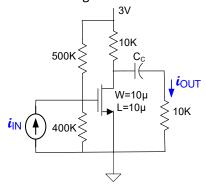

Due 1:00 p.m. Wednesday Nov 19 at Noon (no late submissions accepted this week)

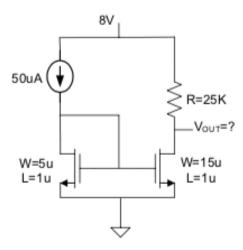
If parameters of semiconductor processes are needed beyond what is given in a specific problem or question, assume a CMOS process is available with the following key process parameters; $\mu_n C_{OX} = 250 \mu A/V^2, \ \mu_p C_{OX} = \mu_n C_{OX}/3 \ , V_{TNO} = 0.4V, \ V_{TPO} = -0.4V, \ C_{OX} = 4fF/\mu^2, \ \lambda = 0. \ Correspondingly, assume all npn BJT transistors have model parameters <math>J_S = 10^{-14} A/\mu^2$ and $\beta = 100$ and all pnp BJT transistors have model parameters $J_S = 10^{-14} A/\mu^2$ and $\beta = 25$. If the emitter area of a transistor is not given, assume it is $100\mu^2$. Parasitic capacitance parameters for a sample 0.5u CMOS process appear in the Appendix.

Problem 1

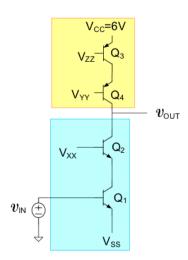
The small-signal equivalent circuit of the standard common-source amplifier biased to operate in the saturation region is shown below where a **small** capacitor, C_L , has been placed on the amplifier output.


Express the small-signal gain of the amplifier, $\mathbf{A}_{V}(\mathbf{s}) = \frac{\mathbf{v}_{\mathsf{OUT}}(\mathbf{s})}{\mathbf{v}_{\mathsf{IN}}(\mathbf{s})}$, in terms of the small-signal model parameters.

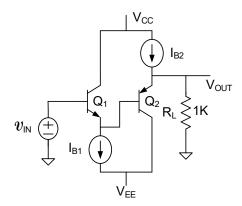
Problem 2


Consider the following amplifier where the input is a small-signal current source i_{IN} . Assume the coupling capacitor C_C is very large. Assume the transistor is in a process with $u_nC_{OX}=250uA/V^2$, $C_{OX}=4fF/u^2$, $V_{THn}=0.4V$, and $\lambda=0$. Assume all parasitic capacitances in the transistor are negligible in this circuit except for C_{GS} .

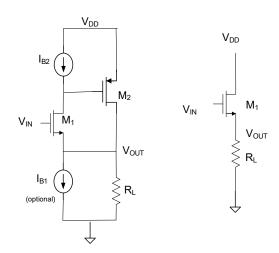
- a) Draw the small-signal equivalent circuit
- b) Determine the dc small-signal current gain $A_{l} = \frac{i_{OUT}}{i_{lN}}$
- c) Determine the frequency where the magnitude of the current gain drops to one.


Problem 3

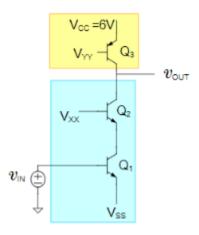
Find V_{OUT} for the circuit below.


Problem 4

Assume the biasing voltages have been selected so that the quiescent output voltage is 2V and that all transisotrs are operating in the forward active region. Determine the small-signal voltage gain if $A_{E1}=A_{E2}=40\mu^2$ and $A_{E3}=A_{E4}=60\mu^2$. Assume the transistors all have parameters $\beta=100$ and $V_{AF}=100V$.

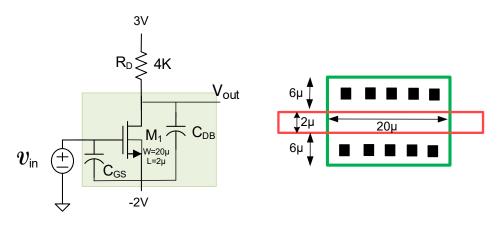

Problem 5 Assume $A_{E1}=A_{E2}=5\mu^2$, $I_{B1}=I_{B2}=1$ mA and $\beta_1=\beta_2=100$. The supply voltages are +5V and -5V.

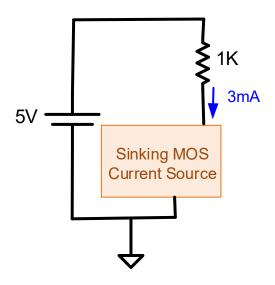
- a) Determine the small signal voltage gain.
- b) Determine the quiescent output voltage
- c) Determine the small-signal input impedance
- d) Determine the maximum output swing.


Problem 6 Consider the two amplifier circuit shown below where $V_{DD}=5V$, $I_{B1}=5\mu A$, $I_{B2}=10\mu A$, and $R_L=5K$. Assume the transistors are identically sized with W=10 μ and L=2 μ .

- a) Give the small-signal voltage gain of the two amplifiers in terms of the small-signal model parameters
- b) Numerically determine the small-signal voltage gain for the two amplifiers if V_{INQ}=1V.
- c) Determine the quiescent output voltage and the difference between the quiescent output voltages of the two amplifiers if $V_{INQ}=1V$.
- d) Repeat part c) if V_{INQ}=4V.

Problem 7


Assume the quiescent output is 2V and all transistors are in the forward active region of operation. Find the small signal voltage gain if $A_{E1}=A_{E2}=55\mu^2$ and $A_{E3}=75\mu^2$. Assume the transistors all have parameters $\beta=100$ and $V_{AF}=100V$.


Problem 8

Consider the following amplifier. Assume the dominant parasitic capacitances in the transistor are C_{GS} and C_{DB} . They are depicted in the green shaded region that comprises the transistor M_1 . The layout of the transistor, not to scale, is also shown below.

- a) Draw the small-signal equivalent circuit that can be used to determine the high-frequency response
- b) Obtain an expression for the small-signal voltage gain in terms of the small-signal model parameters
- c) Determine the 3dB bandwidth (in Hz) for this amplifier.

Problem 9 Design a sinking current source that can sink a current of 3mA from a 1K resistor with one terminal connected to a 5V dc voltage source. You have available for this design any number of MOS transistor, the 5V source, and the 1K resistor.

Appendix: Parasitic Capacitances in a sample 0.5u CMOS Process

CAPACITANCE PARAMETERS	N+	P+ PC	DLY	M1	M2	МЗ	M4	М5	M6	R_W	D_N_W M	SP N_W	UNITS
Area (substrate)	942	1163	106	34	14	9	6	5	3		123	125	aF/um^2
Area (N+active)		8	3484	55	20	13	11	9	8				aF/um^2
Area (P+active)		8	3232										aF/um^2
Area (poly)				66	17	10	7	5	4				aF/um^2
Area (metal1)					37	14	9	6	5				aF/um^2
Area (metal2)						35	14	9	6				aF/um^2
Area (metal3)							37	14	9				aF/um^2
Area (metal4)								36	14				aF/um^2
Area (metal5)									34			984	aF/um^2
Area (r well)	920)											aF/um^2
Area (d well)										582			aF/um^2
Area (no well)	137	7											aF/um^2
Fringe (substrate)	212	2 2 3 5	5	41	35	29	21	14					aF/um
Fringe (poly)				70	39	29	23	20	17				aF/um
Fringe (metal1)					52	34		22	19				aF/um
Fringe (metal2)						48	35	27	22				aF/um
Fringe (metal3)							53	34	27				aF/um
Fringe (metal4)								58	35				aF/um
Fringe (metal5)									55				aF/um
Overlap (N+active)			895	5									aF/um
Overlap (P+active)			73	7									aF/um